资讯

浅谈工业机器人控制技术

转载 2020-09-28 09:03 CODESYS 来源:CODESYS

关于机器人,很多人可能跟我有一样的疑问,为什么机器人它会听指挥,对于机器人,除了它的外形,其他什么都不知道,很多人的兴趣都在于机器人可以像人类一样,成为地球上非常有智慧的“人”,如果你真的很想解开疑惑,可以细看我们今天的话题:机器人控制技术详解

机器人控制系统的特点

机器人的结构采用空间开链接结构,其各个关节的运动是独立的,为了实现末端点的运动轨迹,需要多关节的运动协调。所以,其控制系统要比普通的控制系统复杂得多,具有以下几个特点:

1、机器人的控制与结构运动学及动力学密切相关。机器人手爪的状态可以在各种坐标下进行描述,根据需要选择不同的参考坐标系并做适当的坐标变换;

2、经常要求解运动的正问题和逆问题,除此之外还要考虑惯性力、外力(包括重力)、哥氏力、向心力的影响。

3、一个简单的机器人也至少有3~5个自由度,比较复杂的机器人有十几个,甚至几十个自由度.每个自由度一般包含一个伺服机构,它们必须协调起来,组成一个多变量控制系统。

4、把多个独立的伺服系统有机地协调起来,使其按照人的意志行动,甚至赋予机器人一定的智能,这个任务只能是由计算机来完成。因此,机器人控制系统必须是一个计算机系统。

5、描述机器人状态和运动的数学模型是一个非线性模型,随着状态的不同和外力的变化,其参数也在变化,各变量之间还存在耦合。

6‍、机器人的运动可以通过不同的方式和路径来完成,因此,存在一个“最优”的问题。较高级的机器人可以用人工智能的方法,用计算机建立起庞大的信息库,借助信息库进行控制、决策、管理和操作。

传统的自动机械是以自身的动作为重点,而工业机器人的控制系统更着重本体与操作对象的互相关系。

所以,机器人控制系统是一个与运动学和动力学原理密切相关的、有耦合的、非线性的多变量控制系统。

随着实际工作情况的不同,可以有各种不同的控制方式,从简单的编程自动化、微处理机控制到小型计算机控制等等。

机器人的控制系统的特性和基本要求

要对机器人实施良好的控制,了解被控的特性是很重要的,从我们了解到的机器人动力学来说,具有以下特性:

1、机器人本质是一个非线性系统。引起机器人非线性的因素很多,结构方面、传动件、驱动元件等都会引起系统的非线性。

2、各关节间具有耦合的作用,表现为某一个关节的运动。会对其他关节产生动力效应,使得每一个关节都要承受其他关节运动所产生的扰动。

3、是一个时变系统,动力学参数随着关节运动位置的变化而变化。

从使用的角度来看,机器人是一种特殊的自动化设备,对它的控制有如下特点和要求:

1、多轴运动协调控制,以产生要求的工作轨迹。因为机器人的手部运动是所有关节运动的合成运动,要使手部按照设定的规律运动,就必须很好地控制各关节协调动作,包括运动轨迹,动作时序等多方面地协调。

2、较高的位置精度,很大的调速范围

3、系统的静差率要小

4、各关节的速度误差系数应尽量一致

5、位置无超调,动态响应尽量快

6、需采用加(减)速控制

7、从操作的角度来看,要求控制系统具有良好的人机界面,尽量降低对操作者的要求

8、从系统成本来看,要求尽可能地降低系统的硬件成本,更多地采用软件伺服的方法来完善控制系统的性能

机器人的控制方式

工业机器人控制方式的分类没有统一的标准:

A、机器人动作控制方式

a、机器人运动控制方式

(1.机器人位置控制方式:定位控制方式—固定位置方式、多点位置方式、伺服控制方式;路径控制方式:连续轨迹控制、点到点控制)

(2.机器人速度控制方式:速度控制方式—固定速度控制,可变速度控制;加速度控制方式—固定加速度控制方式,可变加速度控制)

(3.机器人力控制方式)

b、机器人动作顺序控制方式

B.机器人示教控制方式

(1.用实际机器人示教:直接示教法——功率级脱离示教,伺服级接通示教;遥控示教法——示教盒示教法、操纵杆示教法、主从方式示教)

(2.不用机器人示教:间接示教法——模型机器人示数、专用工具示数;离线示教法——数值输入示数、图形示数、软件语言示教)

机器人控制系统结构和工作原理

一个工业机器人系统通常分为机构本体和控制系统两大部分。构成机器人控制系统的要素主要有计算机硬件系统及操作控制软件、输入/输出设备及装置、驱动器系统、传感器系统。

工业机器人的控制系统是机器人的重要组成部分,以完成待定的工作任务,基本功能有:

1、记忆功能

2、示教功能

3、与外围设备联系功能

4、坐标设置功能

5、人机接口

6、传感器接口

7、位置伺服功能

8、故障诊断安全保护功能

当然,还有很多关于机器人控制的知识,比如:机器人单关节位置伺服控制、机器人力控制、机器人的智能控制等等。


CODESYS软件平台下可以实现:逻辑控制(PLC)、运动控制(Motion Control)及 CNC 控制、人机界面(HMI)、基于 Web Service 的网络可视化编程和远程监控、冗余控制(Redundancy)和安全控制(Safety)、以及项目开发与工程协同管理等多个目标和需求。

CODESYSMotion CNC Robotics 数控与机器人控制模块

CODESYS将运动控制与逻辑控制合二为一,集成在IEC61131-3标准的CODESYS编程系统和CODESYS实时运行系统中,形成了CODESYS Motion CNC Robotics工具包。从单轴运动到复杂CNC控制和机器人应用,都可以使用CODESYS Motion CNC Robotics来编程实现。

CODESYSMotion CNC Robotics 的功能包括:

(1)使用PLCopen认证的POU库,可实现单轴和多轴横向

协同运动;

(2)电子凸轮传动;

(3)CNC控制;

(4)轻松开发多轴运动控制器;

(5)支持 PLCopen Part4 标准功能块;

(6)可通过集成凸轮编辑器对凸轮功能进行图形化规划。

CODESYSMotion CNC Robotics 有如下特点:

(1)运动控制编程独立于总线和驱动器;

(2)可用于众多标准运动控制器的驱动器,例如CiA DSP 402控制器、步进电机、变频器、虚拟轴等;

(3)可直接在CODESYS编程环境中配置总线和驱动;

(4)提供包含所有运动控制功能块的POU库,可以快速、高效地开发简单运动程序;

(5)支持在集成的编辑器中设计电子凸轮;

(6)支持集成的DIN 66025编辑器(支持G代码)来规划和编辑复杂的动作;

(7)通过使用PLCopen Motion Part 4 和轴组编辑器来开发多轴机器人控制器;

(8)丰富的库函数集,包括几何数据处理(路径预处理),样条曲线计算,CNC刀具位置校正等;

(9)包含丰富的交换库(用于备份和交换数据用),用以支持不同运动学的工业机器人的开发,例如Delta机器人,SCARA机器人,Portal机器人以及龙门式机器人等;

(10)支持在线的CAM编辑器和CNC编辑器,机器操作员可以图形化的方式创建和编辑CNC程序。

0 0

网友评论

取消